
Chemia fizyczna

Zestaw 2

Teoria kinetyczno-molekularna

Model kinetyczny

Kinetyczny model gazów opiera się na trzech założeniach:

1. Gaz składa się z cząsteczek o masie m pozostających w nieustannym,

chaotycznym ruchu, stosującym się do zasad mechaniki klasycznej.

2. Wielkość cząsteczek jest zaniedbywalna w tym sensie, że ich średnica

jest dużo mniejsza niż średnia odległość, jaką pokonuje cząsteczka po-

między kolejnymi zderzeniami.

3. Cząsteczki oddziałują z sobą wyłącznie podczas krótkich zderzeń sprę-

żystych.

Zderzeniem sprężystym nazywamy takie zderzenie, w którym całkowita

kinetyczna energia translacyjna cząsteczek jest zachowana (pozostaje stała).

Ciśnienie a prędkość cząsteczek

Ciśnienie i objętość gazu powiązane są ze sobą zależnością:

pV = 1
3nMv2

rms (1)

w której: M = mNA jest masą molową cząsteczek, v2
rms prędkością średnią

kwadratową cząsteczek (pierwiastkiem kwadratowym ze średniej kwadratów

prędkości v cząsteczek):

vrms =
√

⟨v2⟩ (2)

Równanie (1) jest jednym z kluczowych wyników modelu kinetycznego.

Jeżeli prędkość średnia kwadratowa cząsteczek zależy tylko od temperatury,

to w stałej temperaturze: pV = const co stanowi treść prawa Boyle’a. Co
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więcej, jeśli równ. (1) ma być dokładnie równaniem stanu gazu doskona-

łego, to prawa jego strona musi być równa nRT . Aby warunek ten był speł-

niony, prędkość średnia kwadratowa cząsteczek w gazie w danej temperaturze

T musi być opisana następującym wyrażeniem:

vrms =
√

3RT

M
(3)

Przykład 1

Oblicz prędkość cząsteczek N2 w temperaturze 25◦C, M = 28, 02 g·mol−1

vrms =

√√√√3 · 8, 314 J · mol−1 · K−1 · 298K
0, 02802 kg · mol −1 = 515 m · s−1

Można uwzględnić także średnią prędkość vśr i najbardziej prawdopodobną

prędkość vnp, które wynoszą:

vśr =
√

8
3π

vrms = 475 m · s−1

vnp =
√

2
3vrms = 420 m · s−1

Rozkład prędkości Maxwella-Boltzmanna

Równanie (2) jest wyrażeniem opisującym średnią kwadratową prędkość

cząsteczek. Jednakże w rzeczywistości prędkości poszczególnych cząsteczek

w gazie obejmują szeroki zakres wartości, a ich wzajemne zderzenia powo-

dują, że prędkości te ulegają ciągłej redystrybucji pomiędzy cząsteczkami.

Poruszająca się szybko cząsteczka może ulec w wyniku zderzenia przyspie-

szeniu do bardzo dużych prędkości, a następnie w wyniku kolejnego zderzenia

może zostać spowolniona. Ułamek cząsteczek mających prędkość w zakresie

od v do v + dv jest proporcjonalny do szerokości tego zakresu, co zapisujemy

jako f(v)dv, a funkcja f(v) zwana jest rozkładem prędkości. Należy zwrócić

uwagę, że, podobnie do innych funkcji rozkładu, f(v) uzyskuje znaczenie fi-

zyczne jedynie wtedy, gdy jest pomnożona przez określony zakres prędkości.
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Ułamek cząsteczek o prędkości z zakresu od v do v + dv jest dany przez

iloczyn f(v)dv, w którym:

f(v) = 4π
(

M

2πRT

)3/2
v2e−Mv2/2RT = 4π

(
m

2πkBT

)3/2
v2e−mv2/2kBT (4)

Funkcja f(v) jest zwana rozkładem prędkości Maxwella-Boltzmanna.

Wielkość kB nosi nazwę stałej Boltzmanna i definiuje się ją jako stosunek:

kB = NA

R

Istotne cechy rozkładu Maxwella-Boltzmanna (pokazane na rysunku 1)

są następujące:

Rysunek 1: Rozkład prędkości cząsteczek w zależności od temperatury

i masy molowej. Należy zwrócić uwagę, że najbardziej prawdopodobna pręd-

kość (odpowiadająca maksimum funkcji rozkładu) rośnie wraz ze wzrostem

temperatury i ze zmniejszeniem się masy molowej, przy czym równocześnie

rozkład ulega rozszerzeniu

• Równanie (4) zawiera funkcję zanikającą eksponencjalnie (dokładniej -

funkcję Gaussa). Jej obecność oznacza, że ułamek cząsteczek o bardzo

dużej prędkości jest niewielki, bo e−x2 staje się bardzo małe dla dużych

wartości x.
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• Czynnik M/(2RT ), przez który mnożone jest v2 w wykładniku ekspo-

nenty , ma dużą wartość przy dużej masie molowej M , dlatego czynnik

eksponencjalny zmierza do zera tym szybciej, im M jest większe. Jest

zatem mało prawdopodobne znalezienie ciężkich cząsteczek mających

bardzo duże prędkości.

• Odwrotna tendencja wynika z zależności temperaturowej. Gdy tempe-

ratura T jest wysoka, czynnik M/(2RT ) w wykładniku eksponenty jest

mały i dlatego czynnik eksponencjalny zmierza do zera względnie wolno

wraz ze wzrostem v. Innymi słowy, większa część cząsteczek osiąga duże

prędkości w wysokich temperaturach niż w niskich

• Czynnik v2 mnoży czynnik eksponencjalny. Ten czynnik zmierza do

zera, gdy v też zbliża się do zera, a więc ułamek cząsteczek o bardzo

małej prędkości także jest niewielki, niezależnie od ich masy.

• Pozostałe czynniki (wyrażenie w nawiasie w równaniu 4 i mnożnik 4π)

zapewniają po prostu, że sumowanie udziałów cząsteczek po całym

zakresie prędkości od zera do nieskończoności prowadzi do wartości 1

(co oznacza, że funkcja jest znormalizowana).

Wartości średnie

Dysponując równaniem rozkładu Maxwella-Boltzmanna możemy obliczyć

średnią wartość dowolnej potęgi prędkości przez wyznaczenie odpowiednich

całek. Na przykład, aby wyznaczyć ułamek cząsteczek o prędkości z zakresu

od v1, do v2, obliczamy całkę:

F (v1, v2) =
v2∫

v1

f(v)dv (5)

Ta całka jest równa polu powierzchni pod wykresem zależności funkcji f od v.
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Wartość tej całki, poza specjalnymi przypadkami, jest obliczana numerycznie

z wykorzystaniem odpowiedniego oprogramowania matematycznego (rys. 2).

Rysunek 2: Aby wyznaczyć prawdopodobieństwo tego, że prędkość cząsteczki

będzie zawarta w zakresie od v1 do v2, należy scałkować rozkład prędkości

w tych granicach. Całka ta jest równa polu powierzchni pod krzywą w okre-

ślonych granicach

Aby wyznaczyć średnią wartość vn, należy obliczyć całkę:

⟨vn⟩ =
∞∫

0

vnf(v)dv (6)

W szczególności, całkowanie funkcji dla n = 2 prowadzi do równ. (3) dla śred-

niej kwadratowej prędkości (v2) cząsteczek w temperaturze T . Można stwier-

dzić, że średnia kwadratowa prędkość cząsteczek gazu jest proporcjonalna

do pierwiastka z temperatury i odwrotnie proporcjonalna do pierwiastka z

masy molowej. Zatem, im wyższa temperatura, tym wyższa średnia kwadra-

towa prędkość, a w danej temperaturze ciężkie cząsteczki poruszają się wol-

niej niż lekkie. Fale dźwiękowe są falami ciśnienia i aby mogły rozchodzić się

w przestrzeni, cząsteczki gazu muszą poruszać się w ten sposób, aby powsta-

wały obszary wysokiego i niskiego ciśnienia. Dlatego też należy oczekiwać, że

średnia kwadratowa prędkość cząsteczek jest zbliżona do prędkości dźwięku

5



w powietrzu (340 m · s−1). Rzeczywiście, jak obliczaliśmy wcześniej, średnia

kwadratowa prędkość cząsteczek N2 wynosi 515 m · s−1 w temperaturze 298

K.

Przykład 2

Oblicz średnią prędkość vśr cząsteczek N2 w powietrzu o temperaturze 25◦C.

Średnią prędkość obliczamy rozwiązując następującą całkę:

vśr =
∞∫

0

vf(v)dv

przy czym f(v) dana jest równaniem 4. Aby obliczyć tą całkę korzystamy z

podanej w zestawie tablicy całek G4.

vśr = 4π
(

M

2πRT

)3/2 ∞∫
0

v3e−Mv2/2RT = 4π
(

M

2πRT

)3/2
·12

(2RT

M

)1/2
=
(8RT

πM

)1/2

Podstawiając odpowiedni dane otrzymujemy:

vśr =
(

8 · 8, 3145 J · mol−1 · K−1 · 298 K
π · 28, 02 kg · mol−1

)1/2

= 475 m · s−1

Jak pokazano w Przykładzie 2, możemy użyć rozkładu Maxwella-Boltzmanna

do wyznaczenia średniej prędkości cząsteczek vśr w gazie:

vśr =
(8RT

πM

)1/2
=
( 8

3π

)1/2
vrms (7)

Możemy także podać najbardziej prawdopodobną prędkość, vnp, na podsta-

wie położenia maksimum krzywej rozkładu:

vnp =
(2RT

M

)1/2
=
(2

3

)1/2
vrms (8)

Położenie maksimum krzywej rozkładu można wyznaczyć, różniczkując f(v)

względem v i znajdując wartość v (inną niż v = 0 i v = ∞) dla której

pochodna jest równa zeru Na rysunku 3 podsumowano te wyniki.
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Rysunek 3: Podsumowanie wniosków wynikających z rozkładu Maxwella dla

cząsteczek o masie molowej M w temperaturze T : vmp = vnp - oznacza pręd-

kość najbardziej prawdopodobną, vmean = vśr - prędkość średnią, vrms - pręd-

kość średnią kwadratową

Średnia prędkość względna, vwzgl, tj. średnia prędkość, z jaką cząsteczka

zbliża się do drugiej cząsteczki tego samego rodzaju, może być także obliczona

na podstawie funkcji rozkładu:

vwzgl =
√

2vśr (9)

Wzór (9) można uogólnić na przypadek dwóch cząsteczek o różnych masach

mA i mB:

vwzgl =
(

8kBT

πµ

)1/2

(10)

gdzie: µ nosi nazwę masy zredukowanej i można ją obliczyć:

µ = mAmB

mA + mB

Zderzenia

Dzięki modelowi kinetycznemu jakościowy opis gazu jako zbioru nieustan-

nie poruszających się i zderzających cząsteczek staje się bardziej ilościowy.
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W szczególności możemy obliczyć częstość zderzeń cząsteczek oraz średnią

drogę, jaką cząsteczka przebywa pomiędzy zderzeniami.

Częstość zderzeń

Teoria kinetyczno-molekularna zakłada, że cząsteczki są punktami mate-

rialnymi, mimo to do ich zderzenia może dojść tylko wtedy, gdy środki dwóch

cząsteczek zbliżą się na odległość d, przy czym d oznacza średnicę zderzenia,

która jest rzędu rzeczywistej średnicy cząsteczek (dla nieprzenikających się

twardych kul jest równa ich średnicy). Jak zobaczymy w Przykładzie 3, kine-

tyczną teorię gazów można zastosować do wyprowadzenia wzoru opisującego

częstość zderzeń, z, tj. liczbę zderzeń pojedynczej cząsteczki w jednostce

czasu. Jeśli w objętości V znajduje się N cząsteczek, to wzór na częstość

zderzeń przyjmuje postać:

z = σvwzglN (11)

gdzie N = N/V , a vwzgl dana jest równaniem 9 lub 10. Powierzchnia σ = πd2

nosi nazwę przekroju poprzecznego na zderzenie cząsteczki. Częstość zderzeń

jako funkcja ciśnienia dana jest wzorem:

z = σvwzglp

kBT
(12)

Z równani (11) wynika, że przy stałej objętości częstość zderzeń rośnie ze

wzrostem temperatury. Natomiast równ. (12) wskazuje, że w stałej tempe-

raturze częstość zderzeń jest proporcjonalna do ciśnienia. Proporcjonalność

ta jest uzasadniona, ponieważ im wyższe ciśnienie, tym większa jest liczba

cząsteczek w próbce, a częstość, z jaką one się zderzają, rośnie, nawet jeśli

ich średnia prędkość pozostaje stała.

Przykład 3

Oblicz częstość zderzeń cząsteczek N2 w powietrzu w temperaturze 25◦C

i pod ciśnieniem 1 atm. Przekrój czynny cząsteczek N2 na zderzenie wynosi

0, 43 nm2.
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W warunkach stałego ciśnienia oraz stałej temperatury wartość częstości

zderzeń cząsteczek wyznaczamy na podstawie równania 12. Aby skorzystać

z powyższej zależności należy wcześniej wyznaczyć wartość względnej szyb-

kości (9) cząsteczek N2:

vwzgl =
√

2vśr =
√

2 · 515 m · s−1 = 728 m · s−1

Wartość szybkości średniej (515 m · s−1) wyznaczono w przykładzie 1.

Częstość zderzeń:

z = σvwzglp

kBT
= 0, 43 · 10−18 m2 · 728 m · s−1 · 1, 01 · 105 Pa

1, 38 · 10−23 J · K−1 · 298 K
= 7, 7 · 109 s−1

W jednej sekundzie cząsteczka azoty zderza się więc ok 8 · 109 razy.

Średnia droga swobodna

Znając częstość zderzeń, możemy obliczyć średnią drogę swobodną, λ

(lambda), czyli średnią odległość, jaką cząsteczka pokonuje pomiędzy zderze-

niami. Jeżeli cząsteczka zderza się z częstością z, to czas między zderzeniami

jest równy 1/z, a zatem przebyta droga wynosi (1/z)vwzgl. Średnia droga

swobodna cząsteczki jest więc równa:

λ = vwzgl

z
(13)

Po podstawieniu wyrażenia (12) zamiast z otrzymujemy:

λ = kBT

σp
(14)

Podwojenie ciśnienia zmniejsza średnią drogę swobodną do połowy.

Przykład 4

Oblicz średnią drogę swobodną dla cząsteczek N2 w temperaturze 25◦C i pod

ciśnieniem 1 atm.

λ = 728 m · s−1

7, 7 · 109 s−1 = 95 · 10−9 m
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czyli 95 nm, to znaczy ok 103 średnic cząsteczki.

Chociaż w równaniu (14) pojawia się temperatura, w próbce o stałej ob-

jętości średnia droga swobodna jest od niej niezależna. Ciśnienie jest bowiem

proporcjonalne do T , a stosunek T/p pozostaje stały, gdy temperatura ro-

śnie. Średnia droga swobodna w przypadku gazu zamkniętego w zbiorniku

o stałej objętości nie zależy zatem od temperatury. Droga między zderze-

niami jest określona przez liczbę cząsteczek obecnych w danej objętości,

a nie przez prędkość, z jaką się one poruszają.

Podsumowując należy powiedzieć, że typowy gaz (N2 lub O2) pod

ciśnieniem 1 atm w temperaturze 25◦C można traktować jak zbiór cząsteczek

poruszających się ze średnią prędkością około 500 m·s−1. Każda cząsteczka

ulega zderzeniu w ciągu 1 ns, a pomiędzy zderzeniami przebywa drogę odpo-

wiadającą około 103 średnic cząsteczkowych. Jeżeli średnica cząsteczek jest

dużo mniejsza od średniej drogi swobodnej (d ≪ λ), kinetyczny model gazów

jest poprawny (gaz zachowuje się w sposób prawie doskonały), gdyż wówczas

cząsteczki spędzają większość czasu z dala od siebie.
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Zadania:

1B.1(b) Wyznacz stosunki (i) średnich prędkości, (ii) średnich translacyjnych

energii kinetycznych atomów: He i Hg w temperaturze 25°C.

1B.2(b) Oblicz średnie prędkości kwadratowe cząsteczek CO2, i atomów He

w temperaturze 20°C.

1B.3(b) Użyj rozkładu prędkości Maxwella-Boltzmanna do wyznaczenia ułamka

cząsteczek CO2, które w temperaturze 400 K mają prędkości w zakresie

od 400 do 405 m · s−1.

1B.4(b) Oblicz średnią prędkość względną cząsteczek O2 i N2 w temp. 25◦C.

1B.5(b) Oblicz najbardziej prawdopodobną prędkość, średnią prędkość i średnią

prędkość względną cząsteczek H2 w powietrzu o temperaturze 20°C.

1B.6(b) Oblicz częstość zderzeń cząsteczek O2 pod ciśnieniem 1,00 atm w temp.

25◦C. Przyjmij σ= 0,40 nm2.

1B.7(b) Najlepsze laboratoryjne pompy próżniowe mogą uzyskać próżnię na

poziomie 1 nTr. Zakładając że powietrze składa się z cząsteczek N2

o średnicy zderzeń 395 pm,a jego temp. wynosi 25◦C, oblicz (i) średnią

prędkość cząsteczek, (ii) średnią drogę swobodną, (iii) częstość zderzeń.

1B.8(b) Pod jakim ciśnieniem średnia droga swobodna atomów argonu w tem-

peraturze 20°C staje się porównywalna z dziesięciokrotnością średnicy

tych atomów. Przyjmij σ=0,36 nm2.

1B.9(b) Na wysokości 15 km temperatura wynosi 217 K, a ciśnienie 12,1 kPa.

Jaka jest średnia droga swobodna cząsteczek N2 w tych warunkach?

Przyjmij σ= 0,43 nm2.
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Przydatne całki dla funkcji:

a) wykładniczych

E.1
∞∫

0

xne−axdx = n!
an+1 gdzie: n! = n(n − 1) · . . . · 1, 0! = 1

E.2
∞∫

0

x4ex

(ex − 1)2 dx = π4

15

b) gaussowskich

G.1
∞∫

0

e−ax2
dx = 1

2

√
π

a

G.2
∞∫

0

xe−ax2
dx = 1

2a

G.3
∞∫

0

x2e−ax2
dx = 1

4

√
π

a3

G.4
∞∫

0

x3e−ax2
dx = 1

2a2

G.5
∞∫

0

x4e−ax2
dx = 3

8a2

√
π

a

G.6

erf z = 2√
π

z∫
0

e−x2
dx
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G.7
∞∫

0

x2m+1e−ax2
dx = m!

2am+1

G.8
∞∫

0

x2me−ax2
dx = (2m − 1)!!

2m+1am

√
π

a
gdzie: (2m−1)!! = 1·3·5·. . .·(2m−1)
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